Add like
Add dislike
Add to saved papers

Semisynthesis and biological evaluation of prenylated resveratrol derivatives as multi-targeted agents for Alzheimer's disease.

A series of prenylated resveratrol derivatives were designed, semisynthesized and biologically evaluated for inhibition of β-secretase (BACE1) and amyloid-β (Aβ) aggregation as well as free radical scavenging and neuroprotective and neuritogenic activities, as potential novel multifunctional agents against Alzheimer's disease (AD). The results showed that compound 4b exhibited good anti-Aβ aggregation (IC50  = 4.78 µM) and antioxidant activity (IC50  = 41.22 µM) and moderate anti-BACE1 inhibitory activity (23.70% at 50 µM), and could be a lead compound. Moreover, this compound showed no neurotoxicity along with a greater ability to inhibit oxidative stress on P19-derived neuronal cells (50.59% cell viability at 1 nM). The neuritogenic activity presented more branching numbers (9.33) and longer neurites (109.74 µm) than the control, and was comparable to the quercetin positive control. Taken together, these results suggest compound 4b had the greatest multifunctional activities and might be a very promising lead compound for the further development of drugs for AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app