Add like
Add dislike
Add to saved papers

Monoclonal antibodies against autocrine motility factor suppress gastric cancer.

Autocrine motility factor (AMF), which is a secreted form of phosphoglucose isomerase, is mainly secreted by various tumors and has cytokine-like activity. AMF is known to stimulate proliferation, survival and metastasis of cancer cells, and angiogenesis within a tumor. The present study investigated whether inhibition of AMF using targeted-antibodies was able to suppress the growth of cancer. A migration assay using a Boyden chamber was utilized to measure the activity of AMF on the motility of cancer cells. A recombinant human AMF (rhAMF) prepared from E. coli transformed with the pET22b-AMF vector increased the motility of MDA-MB-231 and A549 cells, but it did not affect that of NCI-N87 or HepG2 cells, which exhibited the ability to secrete high amounts of their own endogenous AMF into the culture medium. The extent to which the AMF receptor was expressed on cancer cells did not correlate clearly with the cell motility stimulated by rhAMF. In A549-xenografted nude mice treated with sunitinib or cetuximab, a decrease in the plasma AMF concentration was accompanied by a reduction in tumor weight, suggesting an association between the plasma AMF concentration and anticancer activity. A monoclonal antibody (9A-4H), which revealed a high binding affinity for E. coli-derived rhAMF, significantly suppressed the growth of tumors in Balb/c nude mice transplanted with the human gastric cancer cell line NCI-N87, to the similar extent as trastuzumab, an anticancer antibody. The present study suggests, for the first time, that an antibody specific to AMF may be a therapeutic agent for gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app