Add like
Add dislike
Add to saved papers

In Vivo Relationship Between Hypoxia and Angiogenesis in Human Glioblastoma: A Multimodal Imaging Study.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. This aggressiveness is in part attributed to the closely interrelated phenomena tumor hypoxia and angiogenesis, although few in vivo data exist in human brain tumors. This work aimed to study hypoxia and angiogenesis, in vivo and in situ, in patients admitted with GBM using multimodal imaging. Methods: Twenty-three GBM patients were assessed by 18 F-fluoromisonidazole (18 F-FMISO) PET and conventional and perfusion MRI before surgery. The level and location of hypoxia (18 F-FMISO uptake, evaluated by tumor-to-blood [T/B] ratio), vascularization (cerebral blood volume [CBV]), and vascular permeability (contrast enhancement after gadolinium injection) were analyzed. The spatial relationship between tumor hypoxia and angiogenesis was assessed by an overlap analysis of the volume of 18 F-FMISO uptake and the volumes of the high CBV regions and the contrast-enhancement regions. Results: A significant correlation was found between hypoxia and hypervascularization, especially for their maximum values (volume of maximal tumor hypoxia vs. relative CBV: r = 0.61, P = 0.002) and their volumes (hypoxia vs. hypervascularization: r = 0.91, P < 0.001). A large proportion of the high CBVs collocated with hypoxia (81.3%) and with contrast enhancement (46.5%). Conclusion: These results support the hypothesis of a tight association between hypoxia and angiogenesis. Our results suggest that there is insufficient tumor oxygenation in human GBM, despite increased tumor vascularization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app