Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Development and validation of a bioanalytical method based on LC-MS/MS analysis for the quantitation of CIGB-814 peptide in plasma from Rheumatoid Arthritis patients.

CIGB-814, originally named as E18-3 APL1 or APL1 in preclinical experiments, is a novel therapeutic peptide candidate for Rheumatoid Arthritis (RA). It is an altered peptide ligand containing a novel CD4+ T-cell epitope of human heat shock protein 60 (83-109, MW 2988.38g/mol) with a mutation (D100 →L) that increases its affinity for HLA-II type molecules associated to RA. A bioanalytical method, based on LC-MS/MS analysis, in the SRM mode was developed and fully validated to quantify this peptide in human plasma. An internal standard with the same amino acid sequence but labeled with three (13 C6 15 N2 )-Lys residues was used for quantitation. The method provides a linear range from 1.5 to 48ng/mL (without matrix effect and carry over) and an accuracy and precision good enough for monitoring more than 80% of the AUC of the PK profile in a phase I clinical trial. The peptide was administered subcutaneously in three dose levels (1, 2.5 and 5mg) not normalized to the body weight of patients with RA. The low doses imposed an analytical challenge; however, a LLOQ of 1.5ng/mL enabled the PK analysis. The Cmax, reached at 0.5h, showed a great variability, that was most likely due to the non-normalized doses; the proposed mechanism for this peptide; and the variability between patients. A rapid clearance of this peptide (4-6h) is advantageous for an immunomodulatory drug, because the therapeutic schedule requires repeated dosages to restore peripheral tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app