Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization and cellular studies of molecular nanoparticle of iron (III)-tannic complexes; toward a low cost magnetic resonance imaging agent.

Biointerphases 2017 June 8
Herein, a new magnetic resonance imaging (MRI) agent based on molecular nanoparticles of iron(III)-tannic complexes (Fe-TA NPs) is reported. The paramagnetic and molecularlike Fe-TA NPs were successfully synthesized at room temperature within a few minutes without the use of any toxic agents or expensive equipment. The coordination states of the Fe-TA NPs were pH-dependent. The r1 relaxivity values of the bis-dominated and tris-dominated structures of the Fe-TA NPs were determined to be 6.31 and 5.24 mM-1  s-1 , respectively, by using a Philips Achieva 1.5T MRI scanner. The Fe-TA NPs were 177 ± 12 nm in diameter (hydrodynamic size) with a zeta potential value of -28 ± 0.9 mV, dispersing very well in aqueous solution and were highly stable in phosphate buffered saline buffer (pH 7.4) containing competitive ligands and metals. From in vitro studies, it was evident that the Fe-TA NPs exhibited good biocompatibility, with high cellular uptake in HepG2 cells. Clearly, the Fe-TA NPs were found to induce signal enhancement in the T1 -weighted image of the HepG2 cells. As a result, it can be stated that the Fe-TA NPs may have the potential for being developed as low-cost and clinically translatable magnetic resonance imaging agents in the near future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app