Read by QxMD icon Read


Nesrine Riahi, Frederic Murschel, Sophie Lerouge, Yves Durocher, Olivier Henry, Gregory De Crescenzo
In an effort to rationalize and optimize an antiapoptotic coating combining chondroitin sulfate (CS) and epidermal growth factor (EGF) for vascular applications, the authors here report the comparison of two grafting strategies aiming to display EGF in an oriented fashion on CS. For that purpose, the authors produced, purified, and characterized a chimeric protein corresponding to EGF that was N-terminally fused to a cysteine and a coil peptide. The chimera was covalently immobilized via its free thiol group or captured via coiled-coil interactions at the surface of a biosensor or on a chondroitin sulfate coating in multiwell plates, mimicking the coating that was previously developed by them for stent-graft surfaces...
March 21, 2017: Biointerphases
Nicholas G Welch, Judith A Scoble, Benjamin W Muir, Paul J Pigram
Orientation of surface immobilized capture proteins, such as antibodies, plays a critical role in the performance of immunoassays. The sensitivity of immunodiagnostic procedures is dependent on presentation of the antibody, with optimum performance requiring the antigen binding sites be directed toward the solution phase. This review describes the most recent methods for oriented antibody immobilization and the characterization techniques employed for investigation of the antibody state. The introduction describes the importance of oriented antibodies for maximizing biosensor capabilities...
March 16, 2017: Biointerphases
Achyut J Raghavendra, Nasser Alsaleh, Jared M Brown, Ramakrishna Podila
Upon introduction into a biological system, engineered nanomaterials (ENMs) rapidly associate with a variety of biomolecules such as proteins and lipids to form a biocorona. The presence of "biocorona" influences nano-bio interactions considerably, and could ultimately result in altered biological responses. Apolipoprotein A-I (ApoA-I), the major constituent of high-density lipoprotein (HDL), is one of the most prevalent proteins found in ENM-biocorona irrespective of ENM nature, size, and shape. Given the importance of ApoA-I in HDL and cholesterol transport, it is necessary to understand the mechanisms of ApoA-I adsorption and the associated structural changes for assessing consequences of ENM exposure...
March 7, 2017: Biointerphases
Vytis Čižinauskas, Nicolas Elie, Alain Brunelle, Vitalis Briedis
Linoleic, oleic, palmitoleic, palmitic, and stearic fatty acids (FAs) are commonly used in dermatological formulations. They differ by their structure, presence in the skin, and mode of application in pharmaceuticals and cosmetics compounding. These FAs are also known as chemical penetration enhancers, but their mechanisms of penetration enhancement and effect on barrier characteristics of the skin require additional study. In this study, the authors conducted an ex vivo analysis of the distribution of lipid components in the epidermis and dermis of human skin after applying individual FAs...
March 2, 2017: Biointerphases
Byeong Cheol Jo, Hyun Jung Yoon, Myoung-Ryul Ok, Sangwook Wu
Graphene is a nanomaterial that is widely used in electronics, biomedicine, and drug-delivery systems. Although it has many industrial applications, the cytotoxicity of graphene has not been sufficiently studied. In this study, the authors used molecular dynamics simulation to investigate how a graphene nanosheet affects a blood-coagulation protein, namely, a tissue factor/FVIIa binary complex bound to a lipid bilayer membrane, in a 4:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine lipid bilayer mixture...
February 28, 2017: Biointerphases
Mangesh S Diware, Hyun Mo Cho, Won Chegal, Yong Jai Cho, Sang Won O, Se-Hwan Paek, Dong Soo Kim, Kyeong-Suk Kim, Yoon Gi Min, Jae Heung Jo, ChaeHo Shin
Highly sensitive solution immersed silicon (SIS) biosensors were developed for detection of hepatitis B virus (HBV) infection in the early stage. The ultrasensitivity for overlayer thickness at the nonreflecting condition for the p-polarized wave is the basis of SIS sensing technology. The change in thickness due to biomolecular interactions and change in refractive index of the surrounding buffer medium were assessed simultaneously using two separate ellipsometric parameters (Ψ and Δ), respectively, from a single sensing spot...
February 23, 2017: Biointerphases
Yue Dai, Tong Sun, Zhibing Zhang, Zhenyu J Zhang, Jian-Rong Li
Zinc oxide (ZnO) films were prepared on aluminum substrate by a hydrothermal method to investigate the effect of their surface characteristics, including morphology and hydrophobicity, on the corresponding antibiofilm performance. The surface characteristics of the prepared ZnO films were examined by a comprehensive range of methodologies, suggesting that films of distinctive surface morphologies were successfully formed. Subsequently, their antibiofilm activities, using Shewanella putrefaciens as a model bacterium, were assessed...
February 9, 2017: Biointerphases
Hamideh Heidari Zare, Viktorija Juhart, Attila Vass, Gerhard Franz, Dieter Jocham
Catheter associated urinary tract infections (CAUTI), caused by several strains of bacteria, are a common complication for catheterized patients. This may eventually lead to a blockage of the catheter due to the formation of a crystalline or amorphous biofilm. Inhibiting bacteria should result in a longer application time free of complaints. This issue has been investigated using an innovative type of silver-coated catheter with a semipermeable cap layer to prevent CAUTI. In this work, two different types of silver catheters were investigated, both of which were capped with poly(p-xylylene) (PPX-N) and exhibited different surface properties that completely changed their wetting conduct with water...
January 18, 2017: Biointerphases
Seongyeon Cho, Ho Yun Shin, Moon Il Kim
Although protein-stabilized gold nanoclusters (AuNCs) have gathered recent attention as biocompatible peroxidase mimics, their practical utility has been critically limited by the low catalytic activity. Here, the authors have developed a nanohybrid material to significantly enhance the catalytic activity of AuNCs by combining them with other inorganic enzyme mimetics, Fe3O4 magnetic nanoparticles (MNPs), through electrostatic attraction. Owing to the synergistic effect by incorporating AuNCs and MNPs, the constructed nanohybrids yielded highly enhanced catalytic activity and enabled rapid catalytic oxidation of 3,3',5,5'-tetramethylbenzidine substrate to produce a blue-colored solution in proportional to the amount of H2O2...
January 17, 2017: Biointerphases
Giulia Suarato, Weiyi Li, Yizhi Meng
There is a continuous demand for sensitive and efficient cancer drug delivery systems that, when administered at low concentrations, are capable of detecting early-stage pathological conditions and increasing patient survival without adverse side effects. Recent developments in the design of chitosan-based smart drug delivery nanocomplexes are able to respond to the distinctive features of the tumor microenvironment and have provided powerful tools for cancer targeted treatment. Due to its biocompatibility and pH-responsiveness, chitosan has emerged as a promising candidate for the formulation of novel, supramolecular multifunctional materials...
December 25, 2016: Biointerphases
Anna Belu, Katharina Maniura, Sally McArthur
No abstract text is available yet for this article.
December 23, 2016: Biointerphases
Martin Munz, Angelo Bella, Santanu Ray, Nia C Bell, Alexander G Shard, Caterina Minelli
Engineered peptides capable of binding to silica have been used to provide contrast in chemical force microscopy and tested for their capacity to selectively capture silica nanoparticles (NPs). Gold coated atomic force microscopy (AFM) microcantilevers with integrated tips and colloidal probes were functionalized with engineered peptides through a thiol group of a terminal cysteine which was linked via a glycine trimer to a 12-mer binding sequence. The functionalized probes demonstrated a significantly increased binding force on silicon oxide areas of a gold-patterned silicon wafer, whereas plain gold probes, and those functionalized with a random permutation of the silica binding peptide motif or an all-histidine sequence displayed similar adhesion forces to gold and silicon oxide...
December 23, 2016: Biointerphases
Shin Hye Kim, Jeongkwon Kim, Seung-Hyun Jo, Jeong-Hoon Kim, Kyung Joong Kim, Sohee Yoon
Lipid profiling in nine bacterial species has been accomplished by laser desorption ionization mass spectrometry (LDI-MS) using amorphous silicon (a-Si) thin film with 100 nm thickness. Lipid ions could be generated by LDI on a-Si regardless of ion acquisition modes because of a thermal property of a-Si to govern laser-induced surface heating. In a comparative study of lipid profiling in Bacillus lichemiformis by LDI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), LDI-MS on a-Si shows a higher efficiency in lipid and lipopeptide detection than MALDI-MS...
December 22, 2016: Biointerphases
Wei-En Fu, Kundan Sivashanmugan, Jiunn-Der Liao, Ying-Yi Lin, Kai-Hung Cheng, Bernard Haochih Liu, Jun-Jer Yan, Ming-Hong Yeh
The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed. The measured adhesion force increased from 92 pN for AFM tip to 332 pN for that modified with MPTMS...
December 19, 2016: Biointerphases
Giacomo Ceccone, Alexander G Shard
No abstract text is available yet for this article.
December 19, 2016: Biointerphases
Robin Capomaccio, Inês Osório, Isaac Ojea-Jiménez, Giacomo Ceccone, Pascal Colpo, Douglas Gilliland, Rohanah Hussain, Giuliano Siligardi, Francois Rossi, Sylvie Ricard-Blum, Luigi Calzolai
Ultraviolet (UV) radiation, temperature, and time can degrade proteins. Here, the authors show that gold nanoparticles significantly protect human serum albumin from denaturation when exposed to "stressing" conditions such as UV irradiation and sustained exposure in suboptimal conditions. In particular, the authors show that gold nanoparticles significantly reduce the decrease in secondary structure induced by UV irradiation or extended exposure to ambient temperature.
December 16, 2016: Biointerphases
Elisa Garuglieri, Cristina Cattò, Federica Villa, Raffaella Zanchi, Francesca Cappitelli
The present work is aimed at comparing the effects of sublethal concentrations of silver nanoparticles (AgNPs) on the growth kinetic, adhesion ability, oxidative stress, and phenotypic changes of model bacteria (Escherichia coli and Bacillus subtilis) under both aerobic and anaerobic conditions. Growth kinetic tests conducted in 96-well microtiter plates revealed that sublethal concentrations of AgNPs do not affect E. coli growth, whereas 1 μg/ml AgNPs increased B. subtilis growth rate under aerobic conditions...
December 16, 2016: Biointerphases
Diana C António, Claudia Cascio, Douglas Gilliland, António J A Nogueira, François Rossi, Luigi Calzolai
The detection and quantification of nanoparticles is a complex issue due to the need to combine "classical" identification and quantification of the constituent material, with the accurate determination of the size of submicrometer objects, usually well below the optical diffraction limit. In this work, the authors show that one of the most used analytical methods for silver nanoparticles, asymmetric flow field-flow fractionation, can be strongly influenced by the presence of dissolved organic matter (such as alginate) and lead to potentially misleading results...
December 16, 2016: Biointerphases
Sheeja Liza Easo, Parayanthala Valappil Mohanan
Iron oxide nanoparticles present an attractive choice for carcinogenic cell destruction via hyperthermia treatment due to its small size and magnetic susceptibility. Dextran stabilized iron oxide nanoparticles (DIONPs) synthesized and characterized for this purpose were used to evaluate its effect on cellular uptake, cytotoxicity, and oxidative stress response in human peripheral blood lymphocytes. In the absence of efficient internalization and perceptible apoptosis, DIONPs were still capable of inducing significant levels of reactive oxygen species formation shortly after exposure...
December 14, 2016: Biointerphases
Naghme Dorraki, Vahideh Mahdavi, Hamid Ghomi, Alireza Ghasempour
The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography...
December 6, 2016: Biointerphases
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"