Add like
Add dislike
Add to saved papers

Sensitive Detection of Staphylococcus aureus with Vancomycin-Conjugated Magnetic Beads as Enrichment Carriers Combined with Flow Cytometry.

A novel sandwich strategy was designed to detect Staphylococcus aureus. The strategy is based on an antibacterial agent that captures bacterial cells and a fluorescein-labeled antibody that acts as the signal-output probe. Vancomycin (Van), which exerts a strong antibacterial effect on Gram-positive bacteria, was utilized as a molecular recognition agent to detect pathogenic bacteria. To effectively concentrate S. aureus, we used bovine serum albumin (BSA) as the amplification carrier to modify magnetic beads (MBs), which were then functionalized with Van. To improve the specificity of the method for S. aureus detection, we adopted fluorescein isothiocyanate (FITC)-tagged pig immunoglobulin G (FITC-pig IgG) as the signal probe and the second recognition agent that bound between the Fc fragment of pig IgG and protein A in the surface of S. aureus. To quantify S. aureus, we measured the fluorescence signal by flow cytometry (FCM). The use of multivalent magnetic nanoprobes (Van-BSA-MBs) showed a high concentration efficiency (>98%) at bacterial concentrations of only 33 colony-forming units (CFU)/mL. Furthermore, the sandwich mode (FITC-pig IgG/SA/Van-BSA-MBs) also showed ideal specificity because Van and IgG bound with S. aureus at two distinct sites. The detection limit for S. aureus was 3.3 × 101 CFU/mL and the total detection process could be completed within 120 min. Other Gram-positive bacteria and Gram-negative bacteria, including Listeria monocytogenes, Bacillus cereus, Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis, negligibly interfered with S. aureus detection. The proposed detection strategy for S. aureus possesses attractive characteristics, such as high sensitivity, simple operation, short testing time, and low cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app