Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Sensitivity improvement of rapid Vibrio harveyi detection with an enhanced chemiluminescent-based dot blot.

Vibrio harveyi is an opportunistic pathogen in seawater and can cause severe vibriosis. It is prevalent in hatcheries worldwide and can lead to severe economic losses. Therefore, there is an urgent need to develop a rapid detection method for monitoring this pathogen. In this study, to increase the detection sensitivity of our assay with monoclonal antibodies (Mabs) against V. harveyi, the conditions of the dot blot assay were optimized, and enhanced chemiluminescent (ECL) substrate replaced the traditional tetramethylbenzidine (TMB) substrate. Based on the optimization results, an ECL-based novel dot blot assay was developed for the rapid and sensitive detection of V. harveyi. Compared with the traditional dot blot assay, the incubation time was shortened from 8 to 2 h. The limit of detection (LOD) for V. harveyi was 2 × 105  CFU per ml (103  CFU per spot) in pure bacterial suspension, which was 50-fold more sensitive than the traditional dot blot assay (1 × 107  CFU per ml). Furthermore, when compared with indirect ELISA, the dot blot assay showed approximately 1000-fold higher sensitivity (CFU/CFU). After the test sample was pre-enriched in turbot homogenates for 6 h before the dot blot analysis, the LOD for V. harveyi was 10 CFU per ml.

SIGNIFICANCE AND IMPACT OF THE STUDY: Vibrio harveyi is one of the most opportunistic pathogens that can cause high mortality in hatcheries worldwide. To detect this pathogen, a novel dot blot based on enhanced chemiluminescent (ECL) has been established. This ECL-based dot blot was found to be more sensitive and rapid for V. harveyi detection than traditional dot blot, and this technology is recommended as an applied protocol for monitoring V. harveyi in seawater to reduce economic losses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app