Add like
Add dislike
Add to saved papers

Impact of Botox-A SNAP-25 protein expression and the mechanism of inhibitory neurotransmitter imbalance in chronic sciatic nerve pain rat model.

The Botox-A impact on the expression of SNAP-25 protein in rat chronic sciatic nerve pain model was assessed and the mechanism of inhibitory neurotransmitter imbalance was studied. A chronic constriction injury (CCI) model consisted of 30 healthy male rats. The rats were randomly divided into the sham-operated group, CCI group and BoNT/A intervention group, and during 1, 7 and 14 days we conducted mechanical withdrawal threshold (MWT) test and thermal withdrawal latency (TWL) test before and after operation. After 14 days, the animals were sacrificed. SNAP-25 protein expression level, mRNA subunit NR2B within excitatory neurotransmitter glutamate GLT and protein expression level, as well as GAT mRNA, the inhibitory GABA neurotransmitter transporter and protein expression level were studied by RT-polymerase chain reaction and western blot analysis. The difference between MWT and TWL at each point in time before and after operation showed no statistical significance (P>0.05) in the sham-operated group. For the CCI group at each time point, MWT and TWL were obviously lower than the sham-operated group and the difference was statistically significant (P<0.05) while the internal difference at each time point showed no statistical significance (P>0.05). The expression level of protein of SNAP-25 and NR2B mRNA in the CCI group was clearly higher than sham-operated group. Additionally, the expression level of GAT-1 mRNA and protein in CCI group was apparently lower than the sham-operated group. In conclusion, Botox-A helped reduce SNAP-25 within rat chronic sciatic nerve pain model thereby relieving pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app