Journal Article
Review
Add like
Add dislike
Add to saved papers

Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity.

Cyanobacteria are some of the oldest organisms on earth, and have evolved to produce a battery of toxic metabolites, including hepatotoxins, dermatoxins, and neurotoxins. In this review, we focus on the occurrence and mechanisms of toxicity of a number of neurotoxins synthesised by these ancient photosynthetic prokaryotes. We discuss the evidence linking β-methylamino-L-alanine (BMAA), a non-protein amino acid, to an unusual neurological disease complex reported on the island of Guam in the 1950s, and how 60 years later, the role that BMAA plays in human disease is still unclear. There is now evidence that BMAA is also produced by some eukaryotes, and can bioaccumulate in food chains; this combined with higher frequency of cyanobacterial blooms globally, increases the potential for human exposure. Three BMAA isomers that often co-occur with BMAA have been identified, and the current knowledge on the toxicity of these molecules is presented. The acute alkaloid toxins; anatoxin-a, homoanatoxin-a and the saxitoxins, and the organophosphate neurotoxin anatoxin-a(S) are also discussed. In many cases, human exposure to a cocktail of cyanobacterial neurotoxins is likely; however, the implications of combined exposure to these toxins have not been fully explored. Increased understanding of the combined effects of cyanobacterial neurotoxins is required to fully understand how these molecules impact on human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app