Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Real-time electromagnetic tracking-based treatment platform for high-dose-rate prostate brachytherapy: Clinical workflows and end-to-end validation.

Brachytherapy 2018 January
PURPOSE: New technologies were integrated into a novel treatment platform combining electromagnetically (EM) tracked catheters, a 3D ultrasound (3DUS) imaging device, and a new treatment planning system to provide a real-time prostate high-dose-rate (HDR) brachytherapy treatment system. This work defines workflows for offline CT and online 3DUS planning scenarios and preclinical end-to-end validation of the platform.

METHODS AND MATERIALS: The platform is composed of an EM-tracked stylet, a EM-tracked 3DUS probe, and an EM-tracked template guide, all used with the NDI Aurora field generator (NDI, Ontario, Canada). The treatment planning system performs continuous position and angular readings from all three EM sensors into a streamlined environment that allows for (1) contouring; (2) planning; (3) catheter insertion guidance and reconstruction; (4) QA of catheter path and tip position; and (5) exporting to an afterloader. Data were gathered on the times required for the various key steps of the 3DUS-based workflow.

RESULTS: The complete 3DUS-based workflow on 16-catheter implant phantoms took approximately 15 min. This time is expected to increase for actual patients. Plan generation is fast (7.6 ± 2.5s) and the initial catheter reconstruction with updated dose distribution is obtained at no (time) cost as part of the insertion process. Subsequent catheter reconstruction takes on average 10.5 ± 3.1s per catheter, representing less than 3 min for a 16-catheter implant.

CONCLUSIONS: This preclinical study suggests that EM technology could help to significantly streamline real-time US-based high-dose-rate prostate brachytherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app