Add like
Add dislike
Add to saved papers

Experimental and modeling investigation of mass transfer during combined infrared-vacuum drying of Hayward kiwifruits.

In this work, we tried to evaluate mass transfer during a combined infrared-vacuum drying of kiwifruits. Infrared radiation power (200-300 W) and system pressure (5-15 kPa), as drying parameters, are evaluated on drying characteristics of kiwifruits. Both the infrared lamp power and vacuum pressure affected the drying time of kiwifruit slices. Nine different mathematical models were evaluated for moisture ratios using nonlinear regression analysis. The results of regression analysis indicated that the quadratic model is the best to describe the drying behavior with the lowest SE values and highest R value. Also, an increase in the power led to increase in the effective moisture diffusivity between 1.04 and 2.29 × 10-9  m2 /s. A negative effect was observed on the Δ E with increasing in infrared power and with rising in infrared radiation power it was increased. Chroma values decreased during drying.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app