Add like
Add dislike
Add to saved papers

Quantification of Inter-Erythrocyte Forces with Ultra-High Frequency (410 MHz) Single Beam Acoustic Tweezer.

Efforts on quantitative measurements of the interactive forces of red blood cells (RBC) have been pursued for many years in hopes of a better understanding of hemodynamics and blood rheology. In this paper, we report an approach based on an ultra-high frequency (410 MHz) single beam acoustic tweezer (SBAT) for quantitative measurements of inter-RBC forces at a single cell level. The trapping forces produced by this ultra-high frequency (UHF) SBAT can be quantitatively estimated with a micropipette. Since the focal beam diameter of the 410 MHz ultrasonic transducer used in this SBAT was only 6.5 micrometer (μm), which was smaller than that of a RBC (~7.5 μm), it was made possible to directly apply the beam to a single RBC and measure inter-RBC forces against the pre-calibrated acoustic trapping forces as another example of potential cellular applications of the SBAT. The magnitude of these forces was found to be 391.0 ± 86.4 pN. Finally, it is worth noting that unlike several other methods, this method does not require the measuring device to be in contact with the cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app