Add like
Add dislike
Add to saved papers

A component-by-component characterisation of high-risk atherosclerotic plaques by multiphoton microscopic imaging.

AIMS: Atherosclerotic plaques vulnerable to rupture are almost always inflamed, and carry a large lipid core covered by a thin fibrous cap. The other components may include neovascularisation, intraplaque haemorrhage and spotty calcification. In contrast, stable plaques are characterised by a predominance of smooth muscle cells and collagen, and lipid core is usually deep seated or absent. This study is a proof of principle experiment to evaluate the feasibility of multiphoton microscopy (MPM) to identify aforementioned plaque components.

METHODS AND RESULTS: MPM is a nonlinear optical technique that allows imaging based on intrinsic tissue signals including autofluorescence and higher-order scattering. In our study, MPM imaging was performed on morphologically diverse aortic and coronary artery plaques obtained during autopsy. Various histologically verified plaque components including macrophages, cholesterol crystals, haemorrhage, collagen and calcification were recognised by MPM.

CONCLUSIONS: Recognition of the distinct signatures of various plaque components suggests that MPM has the potential to offer next-generation characterisation of atherosclerotic plaques. The higher lateral resolution (comparable to histology) images generated by MPM for identifying plaque components might complement larger field of view and greater imaging depth currently available with optical coherence tomography imaging. As the next step MPM would need to be evaluated for intact vessel imaging ex vivo and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app