Read by QxMD icon Read

Journal of Microscopy

N Chicherova, S E Hieber, A Khimchenko, C Bikis, B Müller, P Cattin
Localizing a histological section in the three-dimensional dataset of a different imaging modality is a challenging 2D-3D registration problem. In the literature, several approaches have been proposed to solve this problem; however, they cannot be considered as fully automatic. Recently, we developed an automatic algorithm that could successfully find the position of a histological section in a micro computed tomography (μCT) volume. For the majority of the datasets, the result of localization corresponded to the manual results...
March 13, 2018: Journal of Microscopy
M Modzel, K A Solanko, M Szomek, S K Hansen, A Dupont, L J Nåbo, J Kongsted, D Wüstner
Analysis of intracellular cholesterol transport by fluorescence microscopy requires suitable fluorescent analogues of cholesterol. Most existing cholesterol analogues contain lipophilic dyes which can compromise the sterol properties in membranes. An alternative strategy is to introduce additional double bonds into the sterol ring system resulting in intrinsic fluorescence, while at the same time keeping the cholesterol-like properties of the analogues. Existing polyene sterols, such as dehydroergosterol (DHE) or cholestatrienol (CTL), however, contain only three double bonds and suffer from low brightness, significant photobleaching and excitation/emission in the ultraviolet region...
March 8, 2018: Journal of Microscopy
L H Li, W Z Jiang, D Y Kang, X Liu, H S Li, G X Guan, S M Zhuo, Z F Chen, J X Chen
In this study, second-harmonic imaging microscopy was used to monitor precancerous colorectal lesions at different stages. It was found that the morphology of glands and lamina propria in mucosa changes with the progression of colorectal diseases from normal to low-grade intraepithelial neoplasia to high-grade intraepithelial neoplasia and this microscopy has the ability of direct visualization of these warning symptoms. Furthermore, two morphologic variables were quantified to determine the changes of glands and collagen in lamina propria during the development of colorectal intraepithelial neoplasia...
March 5, 2018: Journal of Microscopy
A Boyde
Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM)...
February 27, 2018: Journal of Microscopy
Henry Jahn, Ivo DE Sena Oliveira, Vladimir Gross, Christine Martin, Alexander Hipp, Georg Mayer, Jörg U Hammel
Non-invasive imaging techniques like X-ray computed tomography have become very popular in zoology, as they allow for simultaneous imaging of the internal and external morphology of organisms. Nevertheless, the effect of different staining approaches required for this method on samples lacking mineralized tissues, such as soft-bodied invertebrates, remains understudied. Herein, we used synchrotron radiation-based X-ray micro-computed tomography to compare the effects of commonly used contrasting approaches on onychophorans - soft-bodied invertebrates important for studying animal evolution...
February 22, 2018: Journal of Microscopy
C Zhang, F Lin, M DU, W Qu, Z Mai, J Qu, T Chen
Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency...
February 13, 2018: Journal of Microscopy
J J M Kouwenberg, G J Kremers, J A Slotman, H T Wolterbeek, A B Houtsmuller, A G Denkova, A J J Bos
Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution...
February 2, 2018: Journal of Microscopy
C Hu, S Huo, W Shen, Y Li, X Hu
The discontinuity of medium at the boundary produces optically anisotropic response which makes reflectance difference microscopy (RDM) a potential method for nanometre-thickness microstructure measurements. Here, we present the methodology of RDM for the edge measurement of ultrathin microstructure. The RD signal of microstructure's boundary is mathematically deduced according to boundary condition and polarization optics theory. A normal-incidence RDM setup was built simply with one linear polarizer, one liquid crystal variable retarder and one 5 × objective...
January 30, 2018: Journal of Microscopy
J Czerski, W Colomb, F Cannataro, S K Sarkar
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics...
January 25, 2018: Journal of Microscopy
B Peña, G Rh Owen, K E Dettelbach, C P Berlinguette
A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB...
January 25, 2018: Journal of Microscopy
J E Malamy, M Shribak
Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast microscope for in vivo imaging of wound healing. Orientation-independent differential interference contrast provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, nontransgenic animal model...
January 18, 2018: Journal of Microscopy
E Haffner-Staton, A LA Rocca, M W Fay
The aim of this work is to make progress towards the development of 3D reconstruction as a legitimate alternative to traditional 2D characterization of soot. Time constraints are the greatest opposition to its implementation, as currently reconstruction of a single soot particle takes around 5-6 h to complete. As such, the accuracy and detail gains are currently insufficient to challenge 2D characterization of a representative sample (e.g. 200 particles). This work is a consideration of the optimization of the steps included within the computational reconstruction and manual segmentation of soot particles...
January 16, 2018: Journal of Microscopy
G Wille, C Lerouge, U Schmidt
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE)...
January 16, 2018: Journal of Microscopy
Xiaohua He, Fuzhen Guo, Bin Liu
Simplifying sample processing, shortening the sample preparation time, and adjusting procedures to suitable for new health and safety regulations, these issues are the current challenges which electron microscopic examinations need to face. In order to resolve these problems, new plant tissue sample processing protocols for transmission electron microscopy should be developed. In the present study, we chose the LR-White resin-assisted processing protocol for the ultrastructural observation of different types of plant tissues...
January 15, 2018: Journal of Microscopy
E Cocks, M Taggart, F C Rind, K White
Serial block face scanning electron microscopy (SBF-SEM) is a relatively new technique that allows the acquisition of serially sectioned, imaged and digitally aligned ultrastructural data. There is a wealth of information that can be obtained from the resulting image stacks but this presents a new challenge for researchers - how to computationally analyse and make best use of the large datasets produced. One approach is to reconstruct structures and features of interest in 3D. However, the software programmes can appear overwhelming, time-consuming and not intuitive for those new to image analysis...
January 15, 2018: Journal of Microscopy
P Xiu, Q Liu, X Zhou, Y Xu, C Kuang, X Liu
The refractive index (RI) of a sample as an endogenous contrast agent plays an important role in transparent live cell imaging. In tomographic phase microscopy (TPM), 3D quantitative RI maps can be reconstructed based on the measured projections of the RI in multiple directions. The resolution of the RI maps not only depends on the numerical aperture of the employed objective lens, but also is determined by the accuracy of the quantitative phase of the sample measured at multiple scanning illumination angles...
January 11, 2018: Journal of Microscopy
E Hasani, J Parravicini, L Tartara, A Tomaselli, D Tomassini
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras...
January 11, 2018: Journal of Microscopy
D Marques, A Miranda, A G Silva, P R T Munro, P A A DE Beule
Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy...
January 11, 2018: Journal of Microscopy
L Jones, A Varambhia, H Sawada, P D Nellist
In the scanning transmission electron microscope, an accurate knowledge of detector collection angles is paramount in order to quantify signals on an absolute scale. Here we present an optical configuration designed for the accurate measurement of collection angles for both image-detectors and energy-loss spectrometers. By deflecting a parallel electron beam, carefully calibrated using a diffraction pattern from a known material, we can directly observe the projection-distortion in the post-specimen lenses of probe-corrected instruments, the 3-fold caustic when an image-corrector is fitted, and any misalignment of imaging detectors or spectrometer apertures...
January 8, 2018: Journal of Microscopy
Y Wang, C Wang, Z Zhang
Automated cell segmentation plays a key role in characterisations of cell behaviours for both biology research and clinical practices. Currently, the segmentation of clustered cells still remains as a challenge and is the main reason for false segmentation. In this study, the emphasis was put on the segmentation of clustered cells in negative phase contrast images. A new method was proposed to combine both light intensity and cell shape information through the construction of grey-weighted distance transform (GWDT) within preliminarily segmented areas...
December 27, 2017: Journal of Microscopy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"