Add like
Add dislike
Add to saved papers

Quantitative proteomic analysis revealed changes in protein synthesis and mitochondrial functions after acute DNA damage in mouse neural stem cells.

Considering the accumulation of DNA damages are frequently associated with neurodevelopmental disease, neurodegeneration, and brain tumors, exploration of the molecular mechanisms in mouse neural stem cells (NSCs) after DNA damage would be paramount useful for understanding the pathogenesis of these diseases. In present study, we utilized hydroxyurea (HU) treatment to cultured mouse NSCs to induce acute DNA damages. After HU treatment, mouse NSCs displayed elevated reactive oxygen species (ROS) level and compromised DNA repair in HR and NHEJ pathways. Furthermore, we performed quantitative proteomic analysis to unravel the protein variations. GO analysis and IPA suggested proteins participated in protein synthesis, mitochondrial metabolism and oxidative phosphorylation were under great changes after acute DNA damage. Overall, these data provide valuable insight into the molecular and biological changes in NSCs in the circumstance of acute DNA damage, and will help to discover the connections between DNA damage and potential diseases in brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app