Journal Article
Review
Add like
Add dislike
Add to saved papers

Mechanism of action of three newly registered drugs for multiple sclerosis treatment.

Multiple sclerosis (MS) is a disease of suspected autoimmune origin leading to neurodegeneration. The disease pathomechanism is considered to be primarily based on neuroinflammation directed against myelin antigens caused by autoreactive T cells. MS etiology remains still unknown, which makes it difficult to create an efficient therapy, therefore, MS treatment targets mechanisms involved in disease pathology. In this review, we present the mechanism of action of three newly registered drugs for MS. Dimethyl fumarate (DMF) is an agent presenting a broad spectrum of action. Its main activity is based on activating the nuclear factor E2 dependent pathway leading to antioxidant enzyme synthesis. DMF in general suppresses the pro-inflammatory immune activity and exerts a neuroprotective action. Teriflunomide is a more focused drug, acting as an inhibitor of pyrimidines synthesis, important for rapidly dividing cells such as activated lymphocytes. Similarly, alemtuzumab, an anti-CD52 antibody, causes depletion of mainly lymphocytes. Since in MS pathology, T and B cells are involved, this mode of action is promising.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app