Add like
Add dislike
Add to saved papers

Development of a paediatric physiologically based pharmacokinetic model to assess the impact of drug-drug interactions in tuberculosis co-infected malaria subjects: A case study with artemether-lumefantrine and the CYP3A4-inducer rifampicin.

The fixed dosed combination of artemether and lumefantrine (AL) is widely used for the treatment of malaria in adults and children in sub-Sahara Africa, with lumefantrine day 7 concentrations being widely used as a marker for clinical efficacy. Both are substrates for CYP3A4 and susceptible to drug-drug interactions (DDIs); indeed, knowledge of the impact of these factors is currently sparse in paediatric population groups. Confounding malaria treatment is the co-infection of patients with tuberculosis. The concomitant treatment of AL with tuberculosis chemotherapy, which includes the CYP3A4 inducer rifampicin, increases the risk of parasite recrudescence and malaria treatment failure. This study developed a population-based PBPK model for AL in adults capable of predicting the pharmacokinetics of AL under non-DDI and DDI conditions, as well as predicting AL pharmacokinetics in paediatrics of 2-12years of age. The validated model was utilised to assess the concomitant treatment of rifampicin and lumefantrine under standard body-weight based treatment regimens for 2-5year olds, and demonstrated that no subjects attained the target day 7 concentration (Cd7) of 280ng/mL, highlighting the importance of this DDI and the potential risk of malaria-TB based DDIs. An adapted 7-day treatment regimen was simulated and resulted in 63% and 74.5% of subjects attaining the target Cd7 for 1-tablet and 2-tablet regimens respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app