Add like
Add dislike
Add to saved papers

Facile Synthesis of Novel Vanillin Derivatives Incorporating a Bis(2-hydroxyethyl)dithhioacetal Moiety as Antiviral Agents.

A series of vanillin derivatives incorporating a bis(2-hydroxyethyl)dithioacetal moiety was designed and synthesized via a facile method. A plausible reaction pathway was proposed and verified by computational studies. Bioassay results demonstrated that target compounds possessed good to excellent activities against potato virus Y (PVY) and cucumber mosaic virus (CMV), of which, compound 6f incorporating a bis(2-hydroxyethyl)dithioacetal moiety, exhibited the best curative and protection activities against PVY and CMV in vivo, with 50% effective concentration values of 217.6, 205.7 μg/mL and 206.3, 186.2 μg/mL, respectively, better than those of ribavirin (848.0, 808.1 μg/mL and 858.2, 766.5 μg/mL, respectively), dufulin (462.6, 454.8 μg/mL and 471.2, 465.4 μg/mL, respectively), and ningnanmycin (440.5, 425.3 μg/mL and 426.1, 405.3 μg/mL, respectively). Current studies provide support for the application of vanillin derivatives incorporating bis(2-hydroxyethyl)dithioacetal as new antiviral agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app