Add like
Add dislike
Add to saved papers

Transcriptional regulation of hormone-synthesis and signaling pathways by overexpressing cytokinin-synthesis contributes to improved drought tolerance in creeping bentgrass.

The objective of this study was to investigate transcriptomic changes and molecular factors regulated by cytokinins that may contribute to improved drought tolerance in creeping bentgrass (Agrostis stolonifera) overexpressing adenine isopentenyltransferase (ipt). Wild-type (WT) and ipt-transgenic plants were maintained well irrigated or exposed to 21 days of drought stress in growth chambers. Transcriptomic analysis conducted by RNA-seq revealed 661 and 648 upregulated and 764 and 862 downregulated drought-responsive genes (DRGs) in the WT and ipt-transgenic plants, respectively, under drought stress using adjusted P-value of 0.001 and log2 fold change. Gene ontology (GO) term classification showed that a greater number of DRGs were found in ipt-transgenic plants than in WT plants pertaining to biological functions including metabolic process, cellular process, cell structure and growth, macromolecular complex, and binding and catalytic activity, whereas fewer DRGs were found in ipt-transgenic plants than in WT plants pertaining to response to stimulus and antioxidant activity. Furthermore, plant hormone signal transduction pathway analysis revealed three downregulated transcripts [type B - Arabidopsis response regulators (B-ARR), ABA-responsive element binding factor (ABF) and pyrabactin resistance/like (PYR/PYL)] and two upregulated transcripts (BIN2 and JAZ) that were significantly differentiated between ipt-transgenic and WT plants under drought stress, which are particularly interesting for further investigation of molecular mechanisms of hormone-regulation of drought tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app