Add like
Add dislike
Add to saved papers

The catalase gene promoter and 5'-untranslated region variants lead to altered gene expression and enzyme activity in vitiligo.

BACKGROUND: Oxidative stress is considered to be the initial event in the course of vitiligo. The enzyme catalase (CAT) is mainly involved in cellular defence against oxidizing agents through detoxifying H2 O2 .

OBJECTIVES: The aims were (i) to assess erythrocyte CAT enzyme activity and lipid peroxidation (LPO) levels as well as CAT mRNA expression in skin and blood; (ii) to investigate CAT gene promoter rs7943316, rs1001179, 5'-untranslated region rs1049982, and exon (rs17886350, rs11032709, rs17880442, rs35677492) polymorphisms; and (iii) to perform genotype/haplotype-phenotype correlation analyses in patients with vitiligo and controls from Gujarat.

METHODS: CAT activity and LPO levels were measured spectrophotometrically. CAT mRNA levels were estimated using real-time polymerase chain reaction (PCR) by the SYBR Green method. Single-nucleotide polymorphism genotyping was performed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system-PCR analyses.

RESULTS: Patients with vitiligo showed significantly decreased CAT mRNA expression in lesional and nonlesional skin and in blood, with reduced CAT activity compared with that of controls. CAT -89A/T and -20T/C polymorphisms were significantly associated with patients, especially with active and generalized vitiligo, whereas no association was observed for -262G/A and exon polymorphisms. The A-262 T-89 C-20 haplotype with variant alleles was found to be associated with 6·4-fold risk of vitiligo. Genotype/haplotype-phenotype correlation analyses revealed that individuals with susceptible genotypes/haplotype for CAT -89A/T and -20T/C polymorphisms showed significantly decreased CAT mRNA/activity, and only -89A/T polymorphisms showed significantly increased LPO levels compared with wild-type genotypes/haplotype.

CONCLUSIONS: The present study proposes the crucial role of CAT and its allelic variants in oxidative stress-mediated pathogenesis of vitiligo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app