Add like
Add dislike
Add to saved papers

TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential.

Synovial mesenchymal stem cells (MSCs) are a candidate cell source for cartilage and meniscus regeneration. If we can proliferate synovial MSCs more effectively, we can expand clinical applications to patients with large cartilage and meniscus lesions. TNFα is a pleiotropic cytokine that can affect the growth and differentiation of cells in the body. The purpose of this study was to examine the effect of TNFα on proliferation, chondrogenesis, and other properties of human synovial MSCs. Passage 1 human synovial MSCs from 2 donors were cultured with 2.5 x 10-12~10-7 g/ml, 10 fold dilution series of TNFα for 14 days, then the cell number and colony number was counted. The effect of the optimum dose of TNFα on proliferation was also examined in synovial MSCs from 6 donors. Chondrogenic potential of synovial MSCs pretreated with TNFα was evaluated in 6 donors. The expressions of 12 surface antigens were also examined in 3 donors.2.5 ng/ml and higher concentration of TNFα significantly increased cell number/dish and cell number/colony in both donors. The effect of 25 ng/ml TNFα was confirmed in all 6 donors. There was no significant difference in the weight, or amount of glycosaminoglycan and DNA of the cartilage pellets between the MSCs untreated and MSCs pretreated with 25 ng/ml TNFα. TNFα decreased expression rate of CD 105 and 140b in all 3 donors. TNFα promoted proliferation of synovial MSCs with increase of cell number/ colony. Pretreatment with TNFα did not affect chondrogenesis of synovial MSCs. However, TNFα affected some properties of synovial MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app