Add like
Add dislike
Add to saved papers

Magnetization reversal and magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/MgO/α-Fe disks and multilayers.

Nanoscale 2017 June 9
We report on a field induced domain evolutionary procedure in the anisotropic Nd-Dy-Fe-Co-B/MgO/Fe multilayers by using first-order-reversal-curves and magnetic force microscopy. Different reversal behaviors and domain sizes are found in well coupled and decoupled multilayers by changing the thickness of the spacer layer. The competition between dipolar magnetostatic energy and Zeeman energy is evaluated by in-field observation throughout nucleation and annihilation processes. In addition, lithography-patterned arrays of soft Fe disks onto a continuous Nd-Dy-Fe-Co-B hard-magnetic layer are designed. By decreasing the applied field, it is found that magnetization orientations of the Fe disk and Nd-Dy-Fe-Co-B layer are aligned parallel. In the decoupled disk, although the out-of-plane magnetization orientations are observed, the orientation of the domains in the Fe disk is random. Furthermore, it is found that a stronger anisotropy of the Nd-Dy-Fe-Co-B layer decreases the interaction length. Our results provide a new understanding of anisotropic nanocomposite magnets with long-ranged magnetic interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app