Add like
Add dislike
Add to saved papers

Tailoring Active Sites via Synergy between Graphitic and Pyridinic N for Enhanced Catalytic Efficiency of a Carbocatalyst.

Because of the limited characterization methods of the structures and morphology of N-doped carbocatalysts that are available at the atomic level, the detailed promotion mechanism of the catalytic efficiency is unspecific and the particular active sites introduced by the N atoms require further evaluation. Herein, this challenging issue is tackled by extensive theoretical simulation. It is first proposed that the active sites, wherein O2 molecules become adsorbed and activated, be tailored by synergistic graphitic and pyridinic N atoms (GrN and PyN, respectively), which remarkably accelerate the generation of highly chemically reactive O-containing species. The boosted catalytic efficiency is essentially contributed by the electron donor and acceptor of the two active sites, which are induced by PyN and GrN, respectively. These active sites steer the electron transfer between O2 molecules, and the reaction centers in a one-way transmission manner along the PyN → O1 → O2 → C → GrN path. This work provides a feasible protocol for the modification of generally practical carbocatalysts and sheds new light on the understanding of the catalysis mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app