Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Soft Matter in Lipid-Protein Interactions.

Membrane lipids and cellular water (soft matter) are becoming increasingly recognized as key determinants of protein structure and function. Their influences can be ascribed to modulation of the bilayer properties or to specific binding and allosteric regulation of protein activity. In this review, we first consider hydrophobic matching of the intramembranous proteolipid boundary to explain the conformational changes and oligomeric states of proteins within the bilayer. Alternatively, membranes can be viewed as complex fluids, whose properties are linked to key biological functions. Critical behavior and nonideal mixing of the lipids have been proposed to explain how raft-like microstructures involving cholesterol affect membrane protein activity. Furthermore, the persistence length for lipid-protein interactions suggests the curvature force field of the membrane comes into play. A flexible surface model describes how curvature and hydrophobic forces lead to the emergence of new protein functional states within the membrane lipid bilayer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app