Read by QxMD icon Read

Annual Review of Biophysics

Martin Gruebele, Kapil Dave, Shahar Sukenik
In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation...
July 5, 2016: Annual Review of Biophysics
Anna Marie Pyle
Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography...
July 5, 2016: Annual Review of Biophysics
Coral Y Zhou, Stephanie L Johnson, Nathan I Gamarra, Geeta J Narlikar
Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies...
July 5, 2016: Annual Review of Biophysics
Yaojun Zhang, Olga K Dudko
Many essential processes in biology share a common fundamental step-establishing physical contact between distant segments of DNA. How fast this step is accomplished sets the "speed limit" for the larger-scale processes it enables, whether the process is antibody production by the immune system or tissue differentiation in a developing embryo. This naturally leads us to ask, How long does it take for DNA segments that are strung out over millions of base pairs along the chromatin fiber to find each other in the crowded cell? This question, fundamental to biology, can be recognized as the physics problem of the first-passage time, or the waiting time for the first encounter...
July 5, 2016: Annual Review of Biophysics
Fabio Trovato, Edward P O'Brien
Regulation of protein stability and function in vivo begins during protein synthesis, when the ribosome translates a messenger RNA into a nascent polypeptide. Cotranslational processes involving a nascent protein include folding, binding to other macromolecules, enzymatic modification, and secretion through membranes. Experiments have shown that the rate at which the ribosome adds amino acids to the elongating nascent chain influences the efficiency of these processes, with alterations to these rates possibly contributing to diseases, including some types of cancer...
July 5, 2016: Annual Review of Biophysics
Ignacio Diaz-Franulic, Horacio Poblete, Germán Miño-Galaz, Carlos González, Ramón Latorre
The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation...
July 5, 2016: Annual Review of Biophysics
P J Hore, Henrik Mouritsen
Although it has been known for almost half a century that migratory birds can detect the direction of the Earth's magnetic field, the primary sensory mechanism behind this remarkable feat is still unclear. The leading hypothesis centers on radical pairs-magnetically sensitive chemical intermediates formed by photoexcitation of cryptochrome proteins in the retina. Our primary aim here is to explain the chemical and physical aspects of the radical-pair mechanism to biologists and the biological and chemical aspects to physicists...
July 5, 2016: Annual Review of Biophysics
S Walter Englander, Leland Mayne, Zhong-Yuan Kan, Wenbing Hu
Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway...
July 5, 2016: Annual Review of Biophysics
Tineke L Lenstra, Joseph Rodriguez, Huimin Chen, Daniel R Larson
The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle...
July 5, 2016: Annual Review of Biophysics
Wallace F Marshall
The cell represents a highly organized state of living matter in which numerous geometrical parameters are under dynamic regulation in order to match the form of a cell with its function. Cells appear capable of regulating not only the total quantity of their internal organelles, but also the size and number of those organelles. The regulation of three parameters, size, number, and total quantity, can in principle be accomplished by regulating the production or growth of organelles, their degradation or disassembly, and their partitioning among daughter cells during division...
July 5, 2016: Annual Review of Biophysics
Joan Camunas-Soler, Marco Ribezzi-Crivellari, Felix Ritort
We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted...
July 5, 2016: Annual Review of Biophysics
Baohui Chen, Juan Guan, Bo Huang
The three-dimensional organization of the genome plays important roles in regulating the functional output of the genome and even in the maintenance of epigenetic inheritance and genome stability. Here, we review and compare a number of newly developed methods-especially those that utilize the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) system-that enable the direct visualization of specific, endogenous DNA sequences in living cells. We also discuss the practical considerations in implementing the CRISPR imaging technique to achieve sufficient signal-to-background levels, high specificity, and high labeling efficiency...
July 5, 2016: Annual Review of Biophysics
Lishibanya Mohapatra, Bruce L Goode, Predrag Jelenkovic, Rob Phillips, Jane Kondev
Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly...
July 5, 2016: Annual Review of Biophysics
Boon Chong Goh, Jodi A Hadden, Rafael C Bernardi, Abhishek Singharoy, Ryan McGreevy, Till Rudack, C Keith Cassidy, Klaus Schulten
The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures...
July 5, 2016: Annual Review of Biophysics
Benjamin Schuler, Andrea Soranno, Hagen Hofmann, Daniel Nettels
The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology...
July 5, 2016: Annual Review of Biophysics
Nenad Pavin, Iva M Tolić
At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles...
July 5, 2016: Annual Review of Biophysics
Josep Rizo, Junjie Xu
Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF-SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF-SNAP-resistant manner together with Munc18-1...
2015: Annual Review of Biophysics
Lucy R Forrest
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins...
2015: Annual Review of Biophysics
Colleen T Skau, Clare M Waterman
The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures...
2015: Annual Review of Biophysics
Nieng Yan
The ancient and ubiquitous major facilitator superfamily (MFS) represents the largest secondary transporter family and plays a crucial role in a multitude of physiological processes. MFS proteins transport a broad spectrum of ions and solutes across membranes via facilitated diffusion, symport, or antiport. In recent years, remarkable advances in understanding the structural biology of the MFS transporters have been made. This article reviews the history, classification, and general features of the MFS proteins; summarizes recent structural progress with a focus on the sugar porter family transporters exemplified by GLUT1; and discusses the molecular mechanisms of substrate binding, alternating access, and cotransport coupling...
2015: Annual Review of Biophysics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"