Add like
Add dislike
Add to saved papers

Bioactive materials driven primary stability on titanium biocomposites.

The Ti6Al4V alloy constitutes an alternative choice to the most common metal-polymer solutions for total hip arthroplasty (THA) due to good biocompatibility, optimal mechanical properties and high load bearing capacity. However, as Ti6Al4V is not bioactive in its conventional form, hydroxyapatite (HAp) and tricalcium phosphate (TCP) have been widely used as coatings of metal prostheses due to their osteogenic properties and ability to form strong bonds with bone tissue. A promising approach consists in creating a bioactive surface metal matrix composite Ti6Al4V+β-TCP or Ti6Al4V+HAp, obtained by hot pressing (HP) of powders. In this work, the tribological performance of Ti6Al4V+β-TCP and Ti6Al4V+HAp composites is studied to evaluate the frictional response and surface damage representative of prosthesis implantation, key factors in bone fixation. Biocomposites with 10vol% β-TCP and 10vol% Hap, as well as base titanium alloy, were prepared by HP with two surface finishing conditions - polished (Ra=0.3-0.5μm) and sandblasted (Ra=2.1-2.5μm) - for tribological testing against bovine cortical bone tissue. The static friction increases with surface roughness (from 0.20 to 0.60), whereas the kinetic regime follows an inverse trend for the biocomposites. In contrast with current knowledge, this study shows that an implant design solution based on Ti6Al4V+β-TCP or Ti6Al4V+HAp biocomposites with polished surfaces results in an improved primary stability of implants, when compared to traditional rough surfaces. Moreover, it is also expected that the secondary stability will improve due to the adhesion between bone and HAp/β-TCP, increasing the overall stability of the implant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app