Add like
Add dislike
Add to saved papers

Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.

Novel graphene oxide (G)-and d-α-Tocopheryl polyethylene glycol 1000 succinate (T)-doped polyethersulfone (P) hollow fiber membranes (GTP HFMs) were efficiently prepared. GTP HFMs were found to be a desirable biocompatible substrate for attachment and proliferation of human embryonic kidney-293 (HEK-293) cells. Significantly high porosity (94.58±1.1%), low contact angle (61.1±2.5°), low hemolysis (0.58% in batch mode and 0.64% in continuous mode), low terminal complement complex activation (SC5b-9 marker level ∼6.73ng/mL), prolonged blood coagulation time, and low platelet adhesion were measured for GTP HFMs indicating the superior suitability of GTP HFMs for blood-contact applications. Further, SEM and confocal laser microscopy studies showed the significantly high HEK-293 cells attachment and proliferation on GTP HFMs which was corroborated by results of glucose consumption analysis and MTT cell proliferation assay. High ultrafiltration coefficient (110±3mL/m2 /h/mmHg), and albumin solute rejection (94.87±0.5%) were also measured for GTP HFMs. Thus, these results clearly indicated that the synergistic effect of additives improved the biocompatibility and ultrafiltration in GTP HFMs. The developed GTP HFMs can potentially be used for simultaneous/sequential cells attachment and proliferation, and ultrafiltration applications such as the bioartificial kidney.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app