Add like
Add dislike
Add to saved papers

Ultrasmall Magnetic CuFeSe 2 Ternary Nanocrystals for Multimodal Imaging Guided Photothermal Therapy of Cancer.

ACS Nano 2017 June 28
Nanoscale ternary chalcogenides have attracted intense research interest due to their wealth of tunable properties and diverse applications in energy and environmental and biomedical fields. In this article, ultrasmall magnetic CuFeSe2 ternary nanocrystals (<5.0 nm) were fabricated in the presence of thiol-functionalized poly(methacrylic acid) by an environmentally friendly aqueous method under ambient conditions. The small band gap and the existence of intermediate bands lead to a broad NIR absorbance in the range of 500-1100 nm and high photothermal conversion efficiency (82%) of CuFeSe2 nanocrystals. The resultant CuFeSe2 nanocrystals show superparamagnetism and effective attenuation for X-rays. In addition, they also exhibit excellent water solubility, colloidal stability, biocompatibility, and multifunctional groups. These properties enable them to be an ideal nanotheranostic agent for multimodal imaging [e.g., photoacoustic imaging (PAI), magnetic resonance imaging (MRI), computed tomography (CT) imaging] guided photothermal therapy of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app