Add like
Add dislike
Add to saved papers

Unexpected Infection Spikes in a Model of Respiratory Syncytial Virus Vaccination.

Vaccines 2017 May 19
Respiratory Syncytial Virus (RSV) is an acute respiratory infection that infects millions of children and infants worldwide. Recent research has shown promise for the development of a vaccine, with a range of vaccine types now in clinical trials or preclinical development. We extend an existing mathematical model with seasonal transmission to include vaccination. We model vaccination both as a continuous process, applying the vaccine during pregnancy, and as a discrete one, using impulsive differential equations, applying pulse vaccination. We develop conditions for the stability of the disease-free equilibrium and show that this equilibrium can be destabilised under certain extreme conditions, even with 100% coverage using an (unrealistic) vaccine. Using impulsive differential equations and introducing a new quantity, the impulsive reproduction number, we showed that eradication could be acheived with 75% coverage, while 50% coverage resulted in low-level oscillations. A vaccine that targets RSV infection has the potential to significantly reduce the overall prevalence of the disease, but appropriate coverage is critical.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app