Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Solar thermochemical splitting of water to generate hydrogen.

Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2 O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2 O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2 ). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app