Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki.

Water is an essential molecule for living organisms. However, some organisms can survive in environments which receive no rainfall for months and in which ordinary life cannot survive. How do they endure the extended dry season? The sleeping chironomid Polypedilum vanderplanki, which inhabits sub-Saharan Africa, exhibits extreme tolerance to complete desiccation, a process termed anhydrobiosis. During anhydrobiosis these organisms dry up and entirely shut down their metabolism. However, when the dried larvae are immersed in water, their metabolism is resumed. Interestingly, anhydrobiosis allows these organisms to tolerate not only desiccation but also high and low temperatures, the absence of oxygen, radiation, and chemical stresses. Here, we describe the mechanisms by which P. vanderplanki achieves anhydrobiosis revealed in our recent research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app