Journal Article
Review
Add like
Add dislike
Add to saved papers

Synchrotron-based X-ray microscopy for sub-100nm resolution cell imaging.

Microscopic imaging provides a straightforward approach to deepen our understanding of cellular events. While the resolution of optical microscopes is generally limited to 200-300nm due to the diffraction limit, there has been ever growing interest in studying cells at the sub-100nm regime. By exploiting the short wavelength, long penetration depth and elemental specificity of X-rays, synchrotron-based X-ray microscopy (XRM) has demonstrated its power in exploring the structure and function of cells at the nanometer resolution. Here we summarize recent advances in using XRM for imaging ultrastructure of organelles and specific biomolecular locations in cells, and provide a perspective on potentials and applications of XRM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app