Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hybrid Model Membrane Combining Micropatterned Lipid Bilayer and Hydrophilic Polymer Brush.

Substrate-supported planar lipid bilayers (SPBs) are being utilized as a versatile model system of the biological membrane. However, the proximity between the solid support and membrane limits utility of SPBs for the functional analyses of membrane proteins. Here, we present a model membrane that can enlarge the distance between the substrate surface and the membrane by combining a stable scaffold of polymerized lipid bilayer with a hydrophilic polymer brush. A micropatterned SPB was generated by the lithographic polymerization of diacetylene lipids and subsequent incorporation of natural (fluid) lipid bilayers. Hydrophilic polymer brush of poly-2-methacryloyloxyethyl phosphorylcholine (poly(MPC)) was formed on the surface of polymeric bilayer by the in situ atom transfer radical polymerization (ATRP) in aqueous solution, in the presence of embedded fluid lipid bilayers. A model membrane protein (Haloquadratum walsbyi bacteriorhodopsin: HwBR) could be reconstituted into the polymer brush-supported bilayers with significantly reduced immobile molecules. Furthermore, the polymer brush terminals could be functionalized by successively polymerizing MPC and 2-aminoethyl methacrylate (AMA). The reactive amine moiety of poly(AMA) enables to conjugate a wide range of biological molecules and surfaces to the membrane. The combination of micropatterned bilayer and polymer brush mimics the two- and three-dimensional structures of the biological membrane, providing a platform to assay membrane proteins in a truly biomimetic environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app