Journal Article
Review
Add like
Add dislike
Add to saved papers

Small conductance Ca 2+ -activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases.

Ca2+ -activated K+ (KCa ) channels regulate after-hyperpolarization in many types of neurons in the central and peripheral nervous system. Small conductance Ca2+ -activated K+ (KCa 2/SK) channels, a subfamily of KCa channels, are widely expressed in the nervous system, and in the cardiovascular system. Voltage-independent SK channels are activated by alterations in intracellular Ca2+ ([Ca2+ ]i ) which facilitates the opening of these channels through binding of Ca2+ to calmodulin that is constitutively bound to the SK2 C-terminus. In neurons, SK channels regulate synaptic plasticity and [Ca2+ ]i homeostasis, and a number of recent studies elaborated on the emerging neuroprotective potential of SK channel activation in conditions of excitotoxicity and cerebral ischemia, as well as endoplasmic reticulum (ER) stress and oxidative cell death. Recently, SK channels were discovered in the inner mitochondrial membrane and in the membrane of the endoplasmic reticulum which sheds new light on the underlying molecular mechanisms and pathways involved in SK channel-mediated protective effects. In this review, we will discuss the protective properties of pharmacological SK channel modulation with particular emphasis on intracellularly located SK channels as potential therapeutic targets in paradigms of neuronal dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app