Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Laminin and collagen IV inclusion in immunoisolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets.

Extracellular matrix (ECM) molecules have several functions in pancreatic islets, including provision of mechanical support and prevention of cytotoxicity during inflammation. During islet isolation, ECM connections are damaged, and are not restored after encapsulation and transplantation. Inclusion of specific combinations of collagen type IV and laminins in immunoisolating capsules can enhance survival of pancreatic islets. Here we investigated whether ECM can also enhance survival and lower susceptibility of human islets to cytokine-mediated cytotoxicity. To this end, human islets were encapsulated in alginate with collagen IV and either RGD, LRE or PDSGR, i.e. laminin sequences. Islets in capsules without ECM served as control. The encapsulated islets were exposed to IL-1β, IFN-γ and TNF-α for 24 and 72 h. All combinations of ECM improved the islet cell survival, and reduced necrosis and apoptosis after cytokine exposure (P < 0.01). Collagen IV-RGD and collagen IV-LRE reduced danger-associated molecular patterns (DAMPs) release from islets (P < 0.05). Moreover, collagen IV-RGD and collagen IV-PDSGR, but not collagen IV-LRE, reduced NO release from encapsulated human islets (P < 0.05). This reduction correlated with a higher oxygen consumption rate (OCR) of islets in capsules containing collagen IV-RGD and collagen IV-PDSGR. Islets in capsules with collagen IV-LRE showed more dysfunction, and OCR was not different from islets in control capsules without ECM. Our study demonstrates that incorporation of specific ECM molecules such as collagen type IV with the laminin sequences RGD and PDSGR in immunoisolated islets can protect against cytokine toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app