Add like
Add dislike
Add to saved papers

Combined Delivery of a Lipopolysaccharide-Binding Peptide and the Heme Oxygenase-1 Gene Using Deoxycholic Acid-Conjugated Polyethylenimine for the Treatment of Acute Lung Injury.

A ternary complex comprising plasmid DNA, lipopolysaccharide-binding peptide (LBP), and deoxycholic acid-conjugated polyethylenimine (PEI-DA) is prepared for combinational therapy of acute lung injury (ALI). The LBP is designed as an anti-inflammatory peptide based on the lipopolysaccharide (LPS)-binding domain of HMGB-1. In vitro cytokine assays show that LBP reduces levels of proinflammatory cytokines by inhibiting LPS. PEI-DA is synthesized as the gene carrier by conjugation of deoxycholic acid to low-molecular weight polyethylenimine (2 kDa, PEI2k). PEI-DA has higher transfection efficiency than high-molecular weight polyethylenimine (25 kDa, PEI25k). The ternary complex of an HO-1 plasmid (pHO-1), PEI-DA, and LBP is prepared as a combinational system to deliver the therapeutic gene and peptide. The transfection efficiency of the ternary complex is higher than that of the pHO-1/PEI-DA binary complex. The ternary complex also reduces TNF-α secretion in LPS-activated Raw264.7 macrophage cells. Administration of the ternary complex into the lungs of an animal ALI model by intratracheal injection induces HO-1 expression and reduces levels of proinflammatory cytokines more efficiently than the pHO-1/PEI-DA binary complex or LBP alone. In addition, the ternary complex reduces inflammation in the lungs. Therefore, the pHO-1/PEI-DA/LBP ternary complex may be an effective treatment for ALI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app