Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

TRPC Channels and Programmed Cell Death.

Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), bind to their high-affinity receptors to promote neuronal survival during brain development. One of the key downstream pathways is the phospholipase C (PLC) pathway, which not only plays a central role in calcium release from internal store but also in activation of TRPC channels coupled with neurotrophin receptors. TRPC channels are required for the neurotrophin-mediated neuronal protective effects. In addition, activation of TRPC channels is able to protect neurons in the absence of neurotrophin. In some circumstances, TRPC channels coupled with metabotropic glutamate receptor may mediate the excitotoxicity by calcium overload. One of the key questions in the field is the channel gating mechanisms; understanding of which would help design compounds to modulate the channel properties. The development and identification of TRPC channel agonists or blockers are promising and may unveil new therapeutic drugs for the treatment of neurodegenerative diseases and epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app