Add like
Add dislike
Add to saved papers

Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K + channels in parkinsonian discharges.

ERG K+ channels have long been known to play a crucial role in shaping cardiac action potentials and, thus, appropriate heart rhythms. The functional role of ERG channels in the central nervous system, however, remains elusive. We demonstrated that ERG channels exist in subthalamic neurons and have similar gating characteristics to those in the heart. ERG channels contribute crucially not only to the setting of membrane potential and, consequently, the firing modes, but also to the configuration of burst discharges and, consequently, the firing frequency and automaticity of the subthalamic neurons. Moreover, modulation of subthalamic discharges via ERG channels effectively modulates locomotor behaviors. ERG channel inhibitors ameliorate parkinsonian symptoms, whereas enhancers render normal animals hypokinetic. Thus, ERG K+ channels could be vital to the regulation of both cardiac and neuronal rhythms and may constitute an important pathophysiological basis and pharmacotherapeutic target for the growing list of neurological disorders related to "brain arrhythmias."

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app