Add like
Add dislike
Add to saved papers

Metabolic imaging of energy metabolism in traumatic brain injury using hyperpolarized [1- 13 C]pyruvate.

Scientific Reports 2017 May 16
Traumatic brain injury (TBI) is known to cause perturbations in the energy metabolism of the brain, but current tests of metabolic activity are only indirect markers of energy use or are highly invasive. Here we show that hyperpolarized 13 C magnetic resonance spectroscopic imaging (MRSI) can be used as a direct, non-invasive method for studying the effects of TBI on energy metabolism. Measurements were performed on rats with moderate TBI induced by controlled cortical impact on one cerebral hemisphere. Following injection of hyperpolarized [1-13 C]pyruvate, the resulting 13 C-bicarbonate signal was found to be 24 ± 6% lower in the injured hemisphere compared with the non-injured hemisphere, while the hyperpolarized bicarbonate-to-lactate ratio was 33 ± 8% lower in the injured hemisphere. In a control group, no significant difference in signal was found between sides of the brain. The results suggest an impairment in mitochondrial pyruvate metabolism, resulting in a decrease in aerobic respiration at the location of injury following TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app