Add like
Add dislike
Add to saved papers

Emergent community agglomeration from data set geometry.

In the statistical learning language, samples are snapshots of random vectors drawn from some unknown distribution. Such vectors usually reside in a high-dimensional Euclidean space, and thus the "curse of dimensionality" often undermines the power of learning methods, including community detection and clustering algorithms, that rely on Euclidean geometry. This paper presents the idea of effective dissimilarity transformation (EDT) on empirical dissimilarity hyperspheres and studies its effects using synthetic and gene expression data sets. Iterating the EDT turns a static data distribution into a dynamical process purely driven by the empirical data set geometry and adaptively ameliorates the curse of dimensionality, partly through changing the topology of a Euclidean feature space R^{n} into a compact hypersphere S^{n}. The EDT often improves the performance of hierarchical clustering via the automatic grouping information emerging from global interactions of data points. The EDT is not restricted to hierarchical clustering, and other learning methods based on pairwise dissimilarity should also benefit from the many desirable properties of EDT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app