Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rapid degradation, mineralization and detoxification of pharmaceutically active compounds in aqueous solution during pulsed corona discharge treatment.

Water Research 2017 September 16
In the present study, plasma generated by pulsed corona discharge was used for the degradation of diclofenac, carbamazepine and ciprofloxacin. Pollutants in aqueous solution were plasma treated under two categories: single and mixed pollutant condition. Mixed pollutant condition showed an antagonistic behaviour and thus the degradation time was higher for mixed condition compared to the single condition. At different voltage and frequencies, degradation efficiency followed the trend, diclofenac>carbamazepine>ciprofloxacin. Acidic pH slightly favoured the degradation process whereas in presence of radical scavengers (HCO3 - , CO3 2- and humic acid) the degradation yield was significantly decreased. With an input power of 101.5 W, complete degradation was achieved within 4-16 min of plasma treatment for pharmaceutical's concentrations of 1-10 mg/L. As the pollutant concentration increased from 1 to 10 mg/L, the pseudo first order rate constant decreased, while yield increased. Complete degradation pathway of diclofenac, carbamazepine and ciprofloxacin in plasma treatment process are proposed by identifying the intermediates using LC-MS analysis. TOC analysis confirmed 80% mineralization within 10 min of plasma treatment for higher pharmaceutical's concentrations of 10 mg/L. The microalgae ecotoxicity study and disc diffusion test confirmed the complete detoxification of PACs that took place after 6 min of plasma treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app