Add like
Add dislike
Add to saved papers

Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries.

Adjusting the particle size and nanostructure or applying carbon materials as the coating layers is a promising method to hold the volume expansion of Si for its practical application in lithium-ion batteries (LIBs). Herein, the mild carbon coating combined with a molten salt reduction is precisely designed to synthesize raspberry-like hollow silicon spheres coated with carbon shells (HSi@C) as the anode materials for LIBs. The HSi@C exhibits a remarkable electrochemical performance; a high reversible specific capacity of 886.2 mAh g-1 at a current density of 0.5 A g-1 after 200 cycles is achieved. Moreover, even after 500 cycles at a current density of 2.0 A g-1 , a stable capacity of 516.7 mAh g-1 still can be obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app