Add like
Add dislike
Add to saved papers

Bioinformatics Analysis on Molecular Mechanism of Green Tea Compound Epigallocatechin-3-Gallate Against Ovarian Cancer.

Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea, and it exerts multiple effects in humans through mechanisms that remain to be clarified. The present study used bioinformatics to identify possible mechanisms by which EGCG reduces the risk of ovarian cancer. Possible human protein targets of EGCG were identified in the PubChem database, possible human gene targets were identified in the National Center for Biotechnology Information database, and then both sets of targets were analyzed using Ingenuity Pathway Analysis (IPA). The results suggest that signaling proteins affected by EGCG in ovarian cancer, which include JUN, FADD, NFKB1, Bcl-2, HIF1α, and MMP, are involved primarily in cell cycle, cellular assembly and organization, DNA replication, etc. These results identify several specific proteins and pathways that may be affected by EGCG in ovarian cancer, and they illustrate the power of integrative informatics and chemical fragment analysis for focusing mechanistic studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app