Add like
Add dislike
Add to saved papers

Non-destructive and direct determination of the degree of substitution of carboxymethyl cellulose by HR-MAS 13 C NMR spectroscopy.

Carbohydrate Polymers 2017 August 2
We report on the direct assessment of the degree of substitution (DS) of carboxymethyl cellulose (CMC) by High Resolution Magic Angle Spinning (HR-MAS) 13 C NMR spectroscopy. The method is applied to industrial CMCs with low and high viscosity and nominal DS, purified and technical samples, and from cellulose linters or wood. The preparation of a set of purified CMC working standards with accurate DS values for the method validation is also described. The DS values determined via HR-MAS 13 C NMR on the industrial samples are critically compared to the corresponding values achieved through the USP 37 〈281〉 method (ASH method) and the HPLC method, and the advantages and limitations of the HR-MAS NMR method highlighted. Finally, the HR-MAS NMR approach allowed the accurate DS assessment in CMC with low DS, characterized by a non-negligible fraction of non-functionalized cellulose. The proposed "effective DS" accounts for the DS of the solvent-exposed CMC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app