Add like
Add dislike
Add to saved papers

Mechanistic and computational studies of PCB 151 dechlorination by zero valent magnesium for field remediation optimization.

Polychlorinated biphenyls (PCBs) are banned in the U.S. but are persistent in the environment; current regulations provide an urgent need to remediate PCBs in a cost-effective way. In prior work, a novel method of degradation of PCBs via hydrodehalogenation with ball milled zero-valent magnesium and activated carbon showed promising results even with water present in the system. In this research, a detailed study of the byproducts formed in the dechlorination process for PCB 151 (used as an example of hexa-chlorinated PCB) and a study of the mechanism involved in this reaction via density functional theory (DFT) computations are presented. It was demonstrated that these reactions are exothermic and involved two transition states, the formation of the ionic transition state being the rate limiting step of the reaction. The torsion angle of the PCB congeners was also shown to be an extremely important factor to be able to use activated carbon as part of the remediation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app