JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app