Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington's disease.

Huntington's disease (HD) is a fatal genetic disease caused by abnormal aggregation of mutant huntingtin protein (mHtt). Reduction of mHtt aggregation decreases cell death of the brain and is a promising therapeutic strategy of HD. MicroRNAs are short non-coding nucleotides which modulate various genes and dysregulated in many diseases including HD. MicroRNA miR-27a was reported to be reduced in the brain of R6/2 HD mouse model and modulate multidrug resistance protein-1 (MDR-1). Using subventricular zone-derived neuronal stem cells (NSCs), we used in vitro HD model to test the effect of miR-27a on MDR-1 and mHtt aggregation. R6/2-derived NSCs can be differentiated under condition of growth factor deprivation, and the progression of differentiation leads to a decrease of MDR-1 level and efflux function of cells. Immunocytochemistry result also confirmed that mHtt aggregation was increased with differentiation. We transfected miR-27a in the R6/2-derived differentiated NSCs, and examined phenotype of HD, mHtt aggregation. As a result, miR-27a transfection resulted in reduction of mHtt aggregation in HD cells. In addition, MDR-1, which can transport mHtt, protein level was increased by miR-27a transfection. Conversely, knock-down of MDR-1 through MDR-1 siRNA increased mHtt aggregation in vitro. Our results indicate that miR-27a could reduce mHtt level of the HD cell by augmenting MDR-1 function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app