Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The beneficial hemodynamic effects of afterload reduction by sodium nitroprusside during rewarming from experimental hypothermia.

Cryobiology 2017 August
BACKGROUND: Rewarming from hypothermia is associated with depressed cardiac function, known as hypothermia-induced cardiac dysfunction (HCD), and increased systemic vascular resistance (SVR). Previous studies on pharmacological treatment of HCD have demonstrated beneficial effects when using drugs with the combined effects; cardiac inotropic support and peripheral vasodilation. The presented study aims to investigate the isolated effects of arterial dilatation on cardiac functional variables during rewarming from hypothermia using sodium nitroprusside (SNP).

METHODS: We utilized a rat model designed to induce HCD following 4 h at 15 °C and rewarming. To study effects on left ventricular (LV) functional variables in response to afterload reduction by SNP during rewarming a conductance catheter was used. Index of LV contractility, preload recruitable stroke work (PRSW), was obtained with inferior vena cava occlusions at 37 °C before and after hypothermia. Pressure signals from a catheter in the left femoral artery was used to pharmacologically adjust SVR.

RESULTS: After rewarming both animal groups showed significant reduction in both SV and CO as a manifestation of HCD. However, compared to saline controls, SV and CO in SNP-treated animals increased significantly during rewarming in response to afterload reduction displayed as reduced SVR, mean arterial- and end-systolic pressures. The cardiac contractility variable PRSW was equally reduced after rewarming in both groups.

CONCLUSION: When rewarming the present model of HCD a significant increase in SVR takes place. In this context, pharmacologic intervention aimed at reducing SVR show clear positive results on CO and SV. However, a reduction in SVR alone is not sufficient to fully alleviate CO during HCD, and indicate the need of additional inotropic support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app