Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Vacuum level effects on knee contact force for unilateral transtibial amputees with elevated vacuum suspension.

The elevated vacuum suspension system (EVSS) has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on knee contact force (KCF) is still unclear. The objective of this study was to investigate the effect of vacuum levels on KCF for unilateral transtibial amputees (UTA) using the EVSS. Three-dimensional gait was modeled for 9 UTA with five vacuum levels (0-20inHg [67.73kPa], 5inHg [16.93kPa] increments) and 9 non-amputees based on kinematic and ground reaction force data. The results showed that the vacuum level effects were significant for peak axial KCF, which had a relatively large value at 0 and 20inHg (67.73kPa). The intact limb exhibited a comparable peak axial KCF to the non-amputees at 15inHg (50.79kPa). At moderate vacuum levels (5inHg [16.93kPa] to 15inHg [50.79kPa]), co-contraction of quadriceps and hamstrings at peak axial KCF was similar for the intact limb, but was smaller for the residual limb comparing with the non-amputees. The intact limb showed a similar magnitude of quadriceps and hamstrings force at 15inHg (50.79kPa) to the non-amputees, but the muscle coordination patterns varied between the residual and intact limbs. These findings indicate that a proper vacuum level may partially compensate for the lack of ankle plantarflexor and reduce the knee loading. Of the tested vacuum levels, 15inHg (50.79kPa) appears most favorable, although additional analyses with more amputees are suggested to confirm these results prior to establishing clinical guidelines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app